

Communication

Divalent Dirhodium Imido Complexes: Formation, Structure, and Alkyne Cycloaddition Reactivity

Shin Takemoto, Shohei Otsuki, Yasuhiro Hashimoto, Ken Kamikawa, and Hiroyuki Matsuzaka *J. Am. Chem. Soc.*, **2008**, 130 (28), 8904-8905 • DOI: 10.1021/ja8033922 • Publication Date (Web): 18 June 2008 **Downloaded from http://pubs.acs.org on February 8, 2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

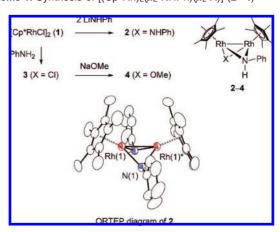
- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

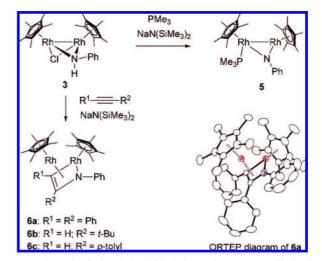
Published on Web 06/18/2008

Divalent Dirhodium Imido Complexes: Formation, Structure, and Alkyne Cycloaddition Reactivity

Shin Takemoto,* Shohei Otsuki, Yasuhiro Hashimoto, Ken Kamikawa, and Hiroyuki Matsuzaka* Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531, Japan


Received May 7, 2008; E-mail: takemoto@c.s.osakafu-u.ac.jp; matuzaka@c.s.osakafu-u.ac.jp

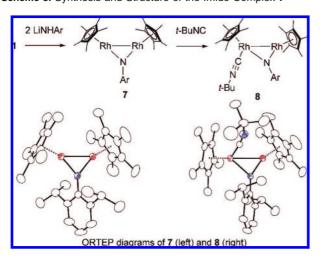
Utilization of transition metal imido complexes as reagents or catalysts in organic synthesis is a topic of broad current interest. 1-3 Among numerous reactivity patterns of multiple-bonded M=NR functionality, 1 the [2 + 2] cycloaddition with alkynes has received considerable attention as a crucial C-N bond forming step in the catalytic hydroamination of alkynes.³⁻⁶ While certain monomeric imido complexes of group 4 and some neighboring metals have proven effective for this type of transformation, 4-6 few late transition metal imido complexes have exhibited comparable reactivity.7 We previously described the formation of a dinuclear azametallacycle from the reaction of the 16-electron ruthenium amido complex $[Cp*Ru(\mu_2-NHPh)]_2$ $(Cp* = \eta^5-C_5Me_5)$ with diphenylacetylene, which likely proceeds via alkyne coordination and aniline elimination followed by imido-alkyne cycloaddition.8 Exploring the scope of late transition metal imido complexes as reagents for C-N bond formation, we here report the chemistry of corresponding Cp*Rh amido and imido complexes, including the synthesis of the divalent amido complex $[Cp*Rh(\mu_2-NHPh)]_2$, generation and alkyne cycloaddition of a transient imido species [Cp*Rh(\(\mu_2\)-NPh)RhCp*], and X-ray structure determination of a sterically protected imido complex [Cp*Rh(μ_2 -NAr)RhCp*] (Ar = 2,6-diisopropylphenyl).


Amido¹⁰ and imido^{7a,11} derivatives of Cp*M (M = group 8–10 metals) fragments have been most commonly derived from the corresponding Cp*M halides by displacement reactions. 12 In this study, we employed the Rh(II) chloride [Cp*RhCl]₂ (1), reported by Sharp and co-workers, 13 as a starting material and prepared the amido complexes 2-4 (Scheme 1) that can be used as precursors to imido complexes. The violet dimeric amide 2 was obtained in 74% yield upon treatment of 1 with 2 equiv of LiNHPh in THF. Heating the chloro dimer 1 with excess aniline in THF at 60 °C resulted in the selective monosubstitution of a chloride ligand to give the amido chloro complex 3 in 71% yield, which was then converted to the amide methoxide 4 in 72% yield upon treatment with NaOMe. Complexes 2-4 were isolated after extraction with hexanes and identified by standard spectroscopic and analytical methods; 2 was further defined by an X-ray diffraction which revealed the nonplanar M₂N₂ core and equatorial phenyl groups similar to those reported for $[Cp*Ru(\mu_2-NHPh)]_2$. The Rh-Rh distance of 2.6097(9) Å is comparable to that of 1 $(2.617(1) \text{ Å})^{13}$ and is consistent with a single bond between the d⁷ Rh(II) centers.

An initial evidence that an imido species can be generated from the amido complexes 2-4 was obtained by dehydrochlorination of 3 with NaN(SiMe₃)₂ in the presence of PMe₃ that afforded the imido complex [Cp*Rh(μ_2 -NPh)Rh(PMe₃)Cp*] (5) in 80% yield (Scheme 2). This compound is an analogue of the iridium imido complex [Cp*Ir(μ_2 -NPh)Ir(PMe₃)Cp*] reported by Dobbs and Bergman as a product of imido transfer reaction from [Cp*Ir(μ_2 -NPh)]₂ to PMe₃. ^{11f} Analogous deprotonation of 3 in the presence of diphenylacetylene resulted in the formation of a dinuclear

Scheme 1. Synthesis of $[(Cp*Rh)_2(\mu_2-NHPh)(\mu_2-X)]$ (2-4)

Scheme 2. Generation, PMe₃ Trapping, and Alkyne Cycloaddition of a Dirhodium Imido Species [Cp*Rh(μ_2 -NPh)RhCp*]


azametallacycle **6a** in 78% yield (Scheme 2). It seems likely that **6a** is formed by alkyne cycloaddition to a transiently generated imido species [Cp*Rh(μ_2 -NPh)RhCp*], since **3** did not react with diphenylacetylene in the absence of the base under comparable reaction conditions (THF, 25 °C, 12 h). With terminal acetylenes, *tert*-butylacetylene and *para*-tolylacetylene, the cycloaddition proceeded regioselectively to give the Markovnikov adducts **6b** (85% yield) and **6c** (91% yield), respectively. The structure of **6a** has been determined by X-ray crystallography. Although terminal CPh and NPh groups in the bridging azapropenylidene ligand PhCCPhNPh are disordered, solved structure clearly shows the unsymmetrical η^2 : η^3 bonded structure of the diruthenium complex [(Cp*Ru)₂(μ_2 - η^3 : η^3 -PhCCPhNPh)]. A fluxional behavior of the azametallacycles

6a–**c** was suggested by their ¹H NMR spectra. For example, in THF- d_8 at -90 °C complex **6a** showed two inequivalent Cp* methyl resonances that coalesced into one sharp singlet as the temperature was raised. This can be accounted for by assuming a rapid flipping of the bridging azapropenylidene moiety between the two Rh centers.

The azametallacycle **6a** was also formed in 47% yield from the bis-amide **2** with elimination of 1 equiv of aniline when **2** was heated at 120 °C for 7 days in the presence of 10 equiv of diphenylacetylene (eq 1). The amide methoxide **4** more smoothly reacted with the same alkyne (1 equiv, 60 °C 18 h) to give **6a** in 98% yield. A preliminary kinetic estimation revealed that the rate of formation of **6a** is first order in the concentration of **4** with little dependence of k_{obs} values on the concentration of alkyne (4.3 \pm 1.0 \times 10⁻⁵ s⁻¹ in the presence of 10–30 equiv of alkyne in C₆D₆ at 50 °C), which again points to a dissociative pathway involving the imido intermediate [Cp*Rh(μ_2 -NPh)RhCp*].

Use of a sterically hindered arylimido ligand allowed isolation of an unsaturated imido complex relevant to the above-postulated imido intermediate. Treatment of 1 with 2 equiv of LiNHAr (Ar =2,6-diisopropylphenyl) afforded the singly bridged imido complex [Cp*Rh(μ_2 -NAr)RhCp*] (7), which was isolated in 64% yield and crystallographically characterized (Scheme 3). The molecule contains a triangular Rh₂N core surrounded by the bulky Cp* and Ar groups. The planar arrangement around nitrogen and the short Rh-N distances (1.8946(18) and 1.8969(19) Å) indicate delocalized Rh-N multiple bonding interactions.^{8,11} The Rh-Rh distance of 2.5190(7) Å is consistent with a Rh-Rh single bond with which each rhodium center would attain a formal 16-electron configuration. While 7 did not react with diphenylacetylene or tert-butylacetylene, it reacts instantaneously with tert-butyl isocyanide to give the adduct $[Cp*Rh(t-BuNC)(\mu_2-NAr)RhCp*]$ (8; 63% yield), in which the terminal isocyanide ligand rapidly migrates between the two Rh centers as evidenced by a single-crystal X-ray and variable temperature NMR studies.

Scheme 3. Synthesis and Structure of the Imido Complex 7

In summary, the amido complexes 2-4 provided a chemistry attributable to a reactive imido species [Cp*Rh(μ_2 -NPh)RhCp*] including a formal [2 + 2] cycloaddition reaction with unactivated alkynes. With the use of a sterically hindered arylimido ligand, a relevant coordinatively unsaturated imidodihodium complex was isolated and structurally characterized. Efforts will be directed toward detailed investigation of this system including catalytic alkyne hydroamination by an imido mechanism.⁴

Acknowledgment. This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas (No. 18065007, "Chemistry of *Concerto* Catalysis") from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We also acknowledge financial support from the Toyota Motor Corporation.

Supporting Information Available: Experimental procedure and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Wigley, D. E. *Prog. Inorg. Chem.* **1994**, *42*, 239–482. (see also refs 4a, 5a, and 9 for more recent progress)
- (2) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905-2919.
- (3) (a) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407–1420. (b) Odom, A. L. Dalton Trans. 2005, 225–233. (c) Alonso, F.; Beltskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3159. (d) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686. (e) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675–703.
- (4) (a) Duncan, A. P.; Bergman, R. G. Chem. Rec. 2002, 2, 431–445. (b) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708–1719. (c) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729–8731.
- (5) (a) Hazari, N.; Mountford, P. Acc. Chem. Res. 2005, 38, 839–849.
 (b) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923–2924.
 (c) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38, 3389–3391.
- (6) (a) Lorber, C.; Choukroun, R.; Laure, V. Organometallics 2004, 23, 1845–1850. (b) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519–2522. (c) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.; Eisen, M. S. Organometallics 2001, 20, 5017–5035.
- (7) (a) Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 2041–2054. (b) Song, J.-S.; Han, S.-H.; Nguyen, S. T.; Geoffroy, G. L. Organometallics 1990, 9, 2386–2395.
- (8) Takemoto, S.; Kobayashi, T.; Matsuzka, H. J. Am. Chem. Soc. 2004, 126, 10802–10803.
- (9) (a) Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T. H. J. Am. Chem. Soc. 2006, 128, 15056–15057.
 (b) Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. J. Am. Chem. Soc. 2005, 127, 11248–11249.
 (c) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350–13351.
 (d) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322–323.
 (e) Sharp, P. R. J. Chem. Soc., Dalton Trans. 2000, 2647–2657, and references cited therein.
- (10) (a) Hoover, J. M.; DiPasquale, A.; Mayer, J. M.; Michael, F. E. Organometallics 2007, 26, 3297–3305. (b) Matsuzaka, H.; Kamura, T.; Ariga, K.; Watanabe, Y.; Okubo, T.; Ishii, T.; Yamashita, M.; Kondo, M.; Kitagawa, S. Organometallics 2000, 19, 216–218. (c) Holland, P. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1996, 118, 1092–1104. (d) Kuhlman, R.; Folting, K.; Caulton, K. G. Organometallics 1995, 14, 3188–3195. (e) Blake, R. E., Jr.; Heyn, R. H.; Tilley, T. D. Polyhedron 1992, 11, 709–710. (f) Koelle, U.; Fuss, B.; Raabe, E. Organometallics 1986, 5, 980–987. (g) Nutton, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1981, 2339–2341.
- (11) (a) Arita, H.; Ishiwata, K.; Kuwata, S.; Ikariya, T. Organometallics 2008, 27, 493-496. (b) Gross, C. L.; Brumaghim, J. L.; Girolami, G. S. Organometallics 2007, 26, 2258-2265. (c) Takemoto, S.; Ogura, S.; Yo, H.; Hosokoshi, Y.; Kamikawa, K.; Matsuzaka, H. Inorg. Chem. 2006, 45, 4871-4873. (d) Ohki, Y.; Takikawa, Y.; Hatanaka, T.; Tatsumi, K. Organometallics 2006, 25, 3111-3113. (e) Hankin, D. M.; Danapoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1996, 4063-4069. (f) Dobbs, D. A.; Bergman, R. G. Organometallics 1994, 13, 4594-4605.
- Related non-Cp metal amides and imides: (a) Zhao, P.; Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 34, 12066–12073. (b) Oro, L. A.; Ciriano, M. A.; Tejel, C.; Bordonaba, M.; Graiff, C.; Tiripicchio, A. Chem. Eur. J. 2004, 10, 708–715. (c) Burrell, A. K.; Steedman, A. J. Organometallics 1997, 16, 1203–1208. (d) Terence, P. K.; Park, L. Y.; Robbins, J.; Schrock, R. R. J. Chem. Soc., Chem. Commun. 1991, 121–122. (e) Martin, G. C.; Palenik, G. J.; Boncella, J. M. Inorg. Chem. 1990, 29, 2027–2030.
 (13) (a) Heard, D. W.; Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1903, 32, 612–620, (b) Sharp, P. R. Inorg. Chem. 1904, 612–620, (c) Sharp, P. R. Inorg. Chem. 1904, 612–620, (c) Sharp, P. R. Inorg. Chem. 1904, 612–620, (d) Sharp, P. R. Inorg. Chem. 1904, 612–
- (13) (a) Hoard, D. W.; Sharp, P. R. *Inorg. Chem.* **1993**, *32*, 612–620. (b) Sharp, P. R.; Hoard, D. W.; Barnes, C. L. *J. Am. Chem. Soc.* **1990**, *112*, 2024–2026.

JA8033922